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Abstract
We investigate coherent electron transport through a parallel circuit of two
quantum dots (QDs), each of which has a single tunable energy level. Electrons
tunnelling via each dot from the left lead interfere with each other at the right
lead. It is shown that due to the quantum interference of tunnelling electrons the
double QD device is magnetically polarized by coherent circulation of electrons
on the closed path through the dots and the leads. By varying the energy level
of each dot one can make the magnetic states of the device be up-, non- or
down-polarized. It is shown that for experimentally accessible temperatures
and applied biases the magnetic polarization currents should be sufficiently
large to observe with current nanotechnology.

(Some figures in this article are in colour only in the electronic version)

The most interesting phenomena seen in mesoscopic electronic devices are due to the
quantum coherence of electrons being maintained over a significant part of the transport
process. Examples of such interference effects [1] that have been observed include weak
localization, universal conductance fluctuations and Aharonov–Bohm (AB) oscillations. In
1995, Yacoby and co-workers [2] demonstrated the coherence of electron waves passing by
resonant tunnelling through a quantum dot (QD) in a double-slit type interference in a ring
geometry. Recent interference experiments [3–5] with two different transport paths in a ring
geometry have enabled the realization of a phase sensitive probe of the effects of electron–
electron interaction on the conductance oscillation such as Kondo correlations [5–9], as well as
the anomalous phase of the transmission coefficients through a QD [10–15]. Two QDs have also
been fabricated experimentally on two different electron pathways [16]. These double quantum
dot (DQD) devices provide a good opportunity to test theories of resonant tunnelling [17, 18],
cotunnelling [19–21] and many-body correlation effects [22, 23]. Compared with ballistic

0953-8984/03/071147+08$30.00 © 2003 IOP Publishing Ltd Printed in the UK 1147

http://stacks.iop.org/JPhysCM/15/1147


1148 S Y Cho et al

µL µR

Γ

Γ

Γ

Γ

1ε

2ε

QD 1

QD 2

Figure 1. A DQD device. Both dots are tunnel-coupled to the left and right leads. The leads are
characterized by the chemical potentials µL and µR . The tunnelling amplitudes between the dots
and the leads are denoted by �. The energy level position in each dot is measured as ε1 and ε2
from the Fermi energy in the leads.

electron interference devices [24, 25], a DQD device makes it possible to manipulate the
coherent tunnelling of electrons through each dot separately by varying the gate voltages of
the dots. König and Gefen [21] have discussed quantum coherence in DQD devices with the
same energy level in each dot.

We study coherent electron transport through two parallel QDs, each of which has a single
tunable energy level (see figure 1). Remarkably, we find a coherent magnetic polarization
current (MPC) circulating on the closed path connecting the dots and the leads as a function
of each dot level position. This MPC is induced by coherent tunnelling for electron transport
through each QD. We discuss the magnetic polarizability of the DQD device due to the MPC
for finite temperature and finite applied bias.

We start with the model Hamiltonian

H =
∑

k∈L ,R
σ

εkc†
kσ ckσ +

∑
i∈1,2

σ

εi d
†
iσ diσ +

∑
i∈1,2

kσ∈L ,R

(Vk,i c
†
kσ diσ + h.c.) (1)

where ckσ and diσ are the annihilation operators with spin σ for electrons in the leads and the
dots (i = 1, 2) respectively. ε1 and ε2 are the level energies in each dot, measured relative to
the Fermi energy of the leads. The symmetric tunnel-coupling between the dots and the leads
will be assumed to be independent of energy, |Vk,i | = |V |.

In our interferometer, where the two electron pathways are allowed from one lead to the
other lead, the levels of the dots are assumed not to be coupled to each other directly. Then we
do not take into account direct interactions such as tunnel-coupling and Coulomb interactions
between the two dots. Furthermore, to simplify the analysis and clarify the origin of the
MPC in the interferometer the intradot electron–electron interaction is not taken into account.
This allows us to obtain exact analytical results which show that the physical origin of the
MPC is due to interference effects that are present for near resonant transport. Then the level
spacing in each dot is larger than the applied bias and temperature because electrons transport
through a single level in the dots. Although intradot Coulomb interactions are considered in the
Coulomb blockade regime, the resonant transport could be well explained in the Hartree–Fock
mean-field level where the energy level of the dots can be described by a simple shift of the
interaction parameter. We acknowledge that in some real devices electron–electron interaction
effects may need to be taken into account and their effect on the MPC needs to be investigated.

The current from the left lead to the dots is defined by I = IL = −ed〈NL 〉/dt =
(ie/h̄)〈[NL , H ]〉, where NL = ∑

kσ∈L c†
kσ ckσ is the total number of electrons in the left lead.

We will employ the Keldysh non-equilibrium Green function technique to identify the local
currents and discuss the MPC in non-equilibrium situations, i.e., at finite bias. The latter
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cannot be described by a Kubo linear response treatment [26]. Using the Green function
G<

kσ,iσ (t − t ′) ≡ i〈d†
iσ (t ′)ckσ (t)〉 which involves electron operators for the leads and for each

dot, one can then use the Keldysh technique to obtain the current written as

I = − e

h

∑
kσ∈L

∫
dε [Vk,1G<

kσ,1σ (ε) + h.c.] − e

h

∑
kσ∈L

∫
dε [Vk,2G<

kσ,2σ (ε) + h.c.]. (2)

The first (second) term of equation (2) describes electron transfer from the left lead to QD 1
(QD 2) or vice versa. Then each electron transfer can be defined as a local current through each
dot, Ii . Thus the total current is the sum of the local currents through each dot, I = I1 + I2.
If Vk,1 = 0 (Vk,2 = 0), equation (2) with a modified Green function gives the current through
QD 2 (QD 1) in the absence of the other dot. The electron transfer from the lead to one of the
dots can be a complex trajectory through the entire DQD device, as well as a direct tunnelling
to the dot. The G< Green functions describe the current contributed by all Feynman paths
going through each dot that start at one lead and end at the other lead. A similar identification
of local currents was made previously [7]. With the Keldysh technique for nonlinear current
through the system, the local currents through each dot are given by [27, 28]

Ii = e

h

∑
σ

∫
dε ( fL (ε) − fR(ε))Ti (ε), (3)

where the local transmission spectral functions are defined by Ti (ε) = {�LGr
σ (ε)�RGa

σ (ε)}ii

which is the i th diagonal component of the matrix transmission spectral function. Here,
fα(ε) = f (ε − µα) is the Fermi–Dirac distribution function of the leads α = L, R and
µL = −µR = eV/2 with applied bias eV between two leads. Due to tunnelling, each dot
level acquires a finite line width � = 2π |V |2N , where N is the density of states in the leads.

The matrix coupling to the leads is described by �L = �R = �

(
1 1
1 1

)
. Gr

σ (ε) is the matrix

dot Green function defined in time space as Gr
i j,σ (t − t ′) = −iθ(t − t ′)〈{diσ (t), d†

jσ (t ′)}〉. By
using the equation of motion treatment, one can obtain the matrix Green function of the dots
as

Gr
σ (ε) =

(
ε − ε1 + i� i�

i� ε − ε2 + i�

)−1

(4)

and Ga
σ (ε) = [Gr

σ (ε)]†. Accordingly, the local transmission spectral functions are written by

T1(ε) = �2(ε − ε2)(2ε − ε1 − ε2)

(ε − ε1)2(ε − ε2)2 + (2ε − ε1 − ε2)2�2
(5)

T2(ε) = �2(ε − ε1)(2ε − ε1 − ε2)

(ε − ε1)2(ε − ε2)2 + (2ε − ε1 − ε2)2�2
. (6)

Note that these can be negative. The total current is the sum of the current through each dot
I = I1 + I2 which is just the current conservation. This leads to the total transmission spectral
function as T (ε) = T1(ε) + T2(ε),

T (ε) = �2(2ε − ε1 − ε2)
2

(ε − ε1)2(ε − ε2)2 + (2ε − ε1 − ε2)2�2
. (7)

We note that this is always positive. The classical analogue of our system is two resistors
in parallel. I1 and I2 must then both be positive. In contrast, in a quantum system the only
constraint is that current conservation requires I = I1 + I2. It is not required that I > I1, I2.
This was pointed out previously by Jayannavar and Deo [29] for the case of a metallic ring
coupled to leads.
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Figure 2. Magnetic polarization of the DQD device as a function of the energy level positions
of each dot (ε1/�, ε2/�), in the limit of zero applied bias at zero temperature for µR < µL .
The vertical arrows stand for the magnetic moment of the DQD device whose length and direction
depend on the amplitude and direction of the MPC respectively.

Let us assume the cases of I < I1 or I < I2 under current conservation for µR < µL .
For given energy levels (ε1, ε2), if I (ε1, ε2) < I1(ε1, ε2), we can assign an excess current
Iexc(ε1, ε2). Then we can rewrite the total current as I (ε1, ε2) = I1(ε1, ε2) − Iexc(ε1, ε2).
The current conservation gives rise to the local excess current of Iexc(ε1, ε2) = −I2(ε1, ε2)

which should circulate clockwise on the closed path through the dots and the leads. In the
opposite case of I < I2, the excess current becomes Iexc(ε1, ε2) = −I1(ε1, ε2) circulating
counter-clockwise on the closed path. The circulating current makes the device magnetically
polarized. Therefore, we define the circulating current as an MPC IM ≡ −Iexc. We choose
its direction for the case of I < I1 as positive. It should be noted that this is purely a quantum
coherent mesoscopic phenomenon.

Considering the transport current (TC), I , and MPC, IM , on an equal footing, we define
the MPC as

IM = −e

h

∑
σ

∫
dε ( fL (ε) − fR(ε))TM (ε) (8)

with the effective spectral function, TM (ε). The TM (ε) can be extracted from the following
arguments. Let us recall the transmission spectral functions for ε1 < ε2. T (ε) has three
extremum points, that is, T (ε1) = T (ε2) = 1 (resonant transmission) and T (ε̄) = 0 (anti-
resonant transmission), where ε̄ = (ε1 + ε2)/2. At ε = ε̄, the anti-resonance of T (ε) gives
rise to a pronounced dip structure originating from the destructive interference between the
transmissions through one QD and the other. Such an anti-resonant feature in a transport
system with two different transmission channels is well understood as the Fano effect [30].
Next, the two local transmission spectral functions of T1(ε) and T2(ε) have three characteristic
points, that is, T1(ε1) = 1 [T2(ε2) = 1] and T1(ε2) = T1(ε̄) = 0 [T2(ε1) = T2(ε̄) = 0]. These
points have nothing to do with resonant and anti-resonant tunnelling through each dot. The two
local transmission spectral functions only give us information about the local currents. Then
we have to determine the behaviour of the local spectral functions in other energy regions.
It is convenient to consider the ratio of the local transmission to the total transmission. The
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ratios are written by T1(ε)/T (ε) = 1/(1 + g(ε)) and T2(ε)/T (ε) = 1/(1 + g(ε)−1), where
g(ε) = (ε −ε1)/(ε −ε2). For ε < ε1 and ε > ε2, since 0 < g(ε) < 1, the ratios are between 0
and 1. In these regions, there are no local excess currents. However, for ε1 < ε < ε̄,
T1(ε)/T (ε) > 1 [T2(ε)/T (ε) < 0] and for ε̄ < ε < ε2, T1(ε)/T (ε) < 0 [T2(ε)/T (ε) > 1].
These spectral properties give rise to the MPC at a given energy ε. Similarly, one can decide
the TM (ε) for ε1 > ε2. Consequently, we obtain the TM (ε) in terms of the local transmission
spectral functions as

TM (ε) =
∑
i �= j

θ(εi − ε j){θ(ε − ε̄)θ(εi − ε)T j (ε) − θ(ε − ε j)θ(ε̄ − ε)Ti (ε)}. (9)

Equations (8) and (9) are the central result of this work. Note that, for a given energy level
position (ε1, ε2) in each dot, the TM (ε) is non-zero between the two energy levels εi < ε < ε j

and is an anti-symmetric function with respect to ε̄, TM (ε− ε̄) = −TM (ε̄−ε). These properties
of TM (ε) determine the window of applied bias in which the MPC can be measured.

At zero temperature, the limit of zero applied bias is the simplest case. The
TC is proportional to the transmission of incoming electrons at the Fermi energy
(εF = 0); limeV →0 I = (2e/h)T (ε)|ε=εF eV and the MPC becomes limeV →0 IM =
(−2e/h)TM (ε)|ε=εF eV . Then the linear conductance G = I/V shows that the resonances
intersect each other due to interference effects when the dot energy levels ε1 and ε2 are varied.
This agrees quantitatively with the experimental data in figure 2(a) of [16]. The MPC is
also produced by interference effects. When the energy level of one dot is lying below
the Fermi energy and that of the other is lying above the Fermi energy, the MPC appears
to polarize the DQD device. If both energy levels of dots are below or above the Fermi
energy the device is not magnetically polarized. This implies that the interference between
the electron and hole channels produces the MPC. Figure 2 shows the magnetic polarization
as a function of (ε1/�, ε2/�) for µR < µL . It is shown that manipulating the energy level
position of each dot, one can magnetize the DQD devices as up-, non-or down-polarized.
Applying a finite bias between the leads, the properties of TM (ε) change the polarization zone
boundaries. A finite applied bias develops a non-polarization zone satisfying the conditions
of −eV/2 < |ε1 − ε2| < eV/2 or −eV/2 < ε1, ε2 < eV/2. While the up-, and down-
polarization zones are extended to the non-polarization zone of the limit of zero applied bias
because the electron and hole channels near the Fermi energy within the window of the applied
bias contribute to the MPC. It should be noted that when the applied bias is reversed to µR > µL

the magnetic moment of the device is reversed.
To illustrate the MPC for finite temperature, we choose a set of energy level positions

(ε1/�, ε2/�) = (0.3,−0.9) which can be adjusted to other values by varying the gate voltages.
In fact, the level positions taken in the same polarization zone do not affect the physics of the
MPC but only change its amplitude. We display the MPC and the TC as a function of applied
bias for different temperatures in figure 3. As the applied bias increases from zero bias, both
the TC and the MPC increase linearly. The MPC is always smaller than the TC for these
given energy level positions. However, for the case of other energy level positions, the MPC
can become larger than the TC (e.g. for (ε1/�, ε2/�) = (0.5,−0.6), IM � 5I at low
temperatures). This linear behaviour of the MPC shows that the MPC emerges only in non-
equilibrium. Further increase of applied bias results in the MPC approaching its maximum
value. Eventually, disappearance of the MPC occurs when the window of the applied bias
becomes larger than the range of ε for which TM(ε) has a non-zero value (−0.9 < ε < 0.3).
The inset of figure 3(b) shows that the TC increases nonlinearly as the applied bias increases.
In addition, compared with the MPC, the TC is suppressed for biases smaller than eV = 0.6�

but enhanced for biases larger than eV = 0.6� by thermal effects. This originates from the
fact that T (ε) has a pronounced dip structure at ε̄ = −0.3�, due to the Fano effect. However,
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Figure 3. (a) MPC and (b) its ratio to the TC as a function of applied bias at (ε1/�, ε2/�) =
(0.3, −0.9) for various temperatures kB T . In the insets, the currents are shown on a linear scale.

the anti-symmetric property of TM(ε) gives rise to moderate thermal suppression of the MPC.
The thermal suppression is manifestly shown in the temperature dependence of the MPC and
the TC in figure 4. The relatively large applied bias leads to the large amplitude of the MPC.
This is consistent with the linear behaviour of the MPC in the IM –V curve. The insets of
figures 4(a) and (b) show, compared with the TC, the more rapid suppression of the MPC since
TM (ε) is zero for low and high energies. At kB T � 0.05�, the MPCs at various applied biases
begin to be suppressed by thermal effects. For temperatures higher than kB T � 0.2�, thermal
effects wash out this novel quantum coherent phenomenon.

From the experimental parameters measured in [16]; � � 50 µeV and A = 2.52 ×
10−13 m2, whereA is a corresponding area to AB oscillation,we can estimate the amplitude of a
MPC and an induced magnetic moment, | 	µD| = A· IM . At the point A in the inset of figure 3(a),
for kB T = 0.1� (T � 50 mK), one can estimate IM � 0.36 nA, when eV � 25 µeV
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Figure 4. Temperature dependence of (a) the MPC and (b) its ratio to the TC at (ε1/�, ε2/�) =
(0.3, −0.9) for different values of the applied bias eV . In the insets, the currents are shown on a
linear scale.

is applied. The induced magnetic moment of the device becomes | 	µD| � 9 µB , where µB

is the Bohr magneton. Comparison of this estimate of the MPC with recent measurements
of persistent currents [25] suggests that the effects we are discussing can be observed with
existing nanotechnology.

In summary, we studied coherent electron transport through two parallel QDs, each of
which has a single tunable energy level. By changing these energy levels in the DQD device
one can vary the sign and magnitude of the MPC induced by quantum interference effects.
This current is sufficiently large that it should be experimentally observable.
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